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Abstract 
A simple, portable and useful collection of 

software tools has been developed for the analysis 
of airport surface traffic. The tools are based on a 
flexible and robust traffic-flow model, and include 
calibration, validation and simulation functionality 
for this model. Several different interfaces have 
been developed to help promote usage of these 
tools, including a portable MatlabTM implementation 
of the basic algorithms; a web-based interface 
which provides online access to automated analyses 
of airport traffic based on a database of real-world 
operations data which covers over 250 U.S. airports 
over a 5-year period; and an interactive simulation- 
based tool currently in use as part of a college-level 
educational module. More advanced applications 
for airport departure traffic include taxi-time 
prediction and evaluation of “windowing” 
congestion control. 

Introduction 
Congestion and delays on the airport surface 

are a significant source of financial and uncertainty 
costs for both airlines and the flying public. These 
mounting costs have fueled research into methods 
for improving the airport departure process, either 
via the elimination of existing inefficiencies or the 
creation of decision-aiding tools. Lacking any 
means to field-test new hypothesized models and 
proposed improvements, this research has 
necessitated the use of s o h a r e  tools for modeling, 
analyzing and simulating airport surface traffic. 

A variety of software tools with generally 
similar goals are commercially available and widely 
used for airport planning [ 11. However, as often the 
case, commercial software tools lack several 

characteristics which are required in academic 
research: 

Easy to modify the traffic-flow model 
used by the software. 
Traffic-flow model and software are both 
well-adapted to limitations of available 
real-world operations data. 
Software is low-cost, both in terms of 
licensing fees and the manpower needed 
to use it, with a fast learning curve. 

These required characteristics have led to the 
development of several in-house software tools. 
This paper gives an overview of these software 
tools, including their basic functionality and the 
underlying algorithms. 

In addition, two interfaces to the software tools 
have been developed to help promote usage of these 
tools. One interface is web-based and allows online 
users to access a large database of real-world 
operations data and then download airport traffic 
analyses generated by our server. Through 
continuing improvements to this interface, new 
applications such as taxi-time predictors and 
proposed congestion-control algorithms are being 
made available in a usehl public forum, allowing 
these research results to move more easily out of 
the laboratory and into the hands of users in the 
field. The second interface is part of an interactive 
educational module currently in use at MIT. This 
interface consists of a set of ExcelTM spreadsheets 
which contain airport operations data; students can 
modify this data and then feed their proposed 
schedules and traffic restrictions into a software 
tool which simulates the expected airport surface 
traffic resulting from their changes. 



. 
Software Tools 

Description Of Input And Output 

treats the airport surface as a “black-box” queueing 
system with observed inputs and outputs, and a 
simple set of internal dynamics which are not 
observed directly but are assumed to have a known 
structure’. Hence, to be useful, real-world 
operations data must provide a description of 
airport surface traffic which appeals to the model. 
For each aircraft, the following information is 
required: 

1) source: a “classifier” variable, describing 
the origin of the aircraft on the airport 
surface. It is assumed that different sources 
of aircraft (e.g. airlines, terminals, or gates, 
depending on the level of detail provided 
by the real-world operations data) will have 
different characteristic taxi-times. All of 
the s o h a r e  tools account for this effect. 

2) Ti (llme-in): epoch when the aircraft enters 
the system (i.e. pushback for departure 
traffic, or wheels-on for arrival traffic). 

3) To (Zime-out): epoch when the aircraft exits 
the system (Le. wheels-off for departure 
traffic, or gate-arrival for arrival traffic). 

A variety of real-world operations data can be used 
to obtain these measurements. Airline operations 
centers often maintain records of gate-arrival and 
pushback times. Multilateration and terminal-area 
radar systems can estimate wheels-off and wheels- 
on times. In our research, we have used operations 
data taken from either the Airline Service Quality 
Performance (ASQP) database or directly from 
FAA tower flight-strips. 

The description of airport surface traffic 
provided by ASQP is relatively coarse. The source 
of each aircraft is only partially approximated by 
the airline. Taxi-paths, runway assignments, and 
gate assignments are not recorded. A fraction of the 
total airport surface traffic goes unmonitored, since 
ASQP only records domestic jet operations by the 
major U.S. passenger carriers, ignoring all 
international flights, all prop and regional-jet traffic, 

The traffic-flow model underlying the software 

’ See [6,7] for information on the structure of the traffic-flow 
model. 

and all traffic by regional airlines and freight 
carriers. However, the ASQP data does have 
several advantages: ASQP records the out-off-on-in 
(0001) epochs with reasonable lmin accuracy and 
precision, and is available for hundreds of U.S. 
airports over a period of several years. 

For applications requiring finer detail than 
ASQP provides, good results have been obtained 
using data from FAA tower flight-strips [2]. When 
combined with tower and TRACON logs, flight- 
strip data provides a very thorough and complete 
description of traffic at a given airport. There can 
be some difficulty obtaining flight-strip data, 
although for research purposes it is perfectly 
reasonable to use flight-strip data which is several 
months old. Flight-strip data can also be time- 
consuming to transcribe from paper to the 
computer, although ongoing efforts to increase 
automation in the tower and TRACON may 
mitigate this problem. 

Once input data has been obtained, it is fed to 
the software tools, which produce several types of 
outputs. The calibration algorithms produce a set o 
descriptive statistics for the airport surface traffic 
described by the real-world operations data. Such 
statistics are then used together with software tools 
for Monte Carlo simulation to estimate statistics foi 
taxi-times, congestion and delays. Customized 
visualization tools are available for most of these 
results. 

Algorithms 

basic algorithms. The calibration algorithms take 
raw input data and produce calibrated model 
parameters; these parameters include the estimated 
mean, variance and distribution of unimpeded taxi- 
time, and the maximum rate at which the traffic 
bottleneck can service aircraft. The simulation 
algorithms take a calibrated model together with a 
set of system inputs (e.g. pushbacks in the case of 
departure traffic) and estimate the expected system 
outputs (e.g. wheels-off times). Finally, the 
validation algorithms combine calibration and 
simulation to determine whether a calibrated model 
actually reproduces the traffic behaviors observed at 
a particular real-world airport. 

The software tools are based on a small set of 
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Calibration Of Unimpeded Taxi-Time 
Let S denote the set of sources of aircraft, as 

specified in the input data. One quantity of interest 
is the traffic statistics for aircraft originating at a 
given source SE S, for example the mean and 
standard deviation of taxi-time for departures from 
a given airport terminal. While the mean and 
standard deviation are useful statistics, they do not 
completely characterize the variability of taxi-times. 
Instead, the following algorithm is used to directly 
estimate probability density functions (p.d.f.’s) of 
unimpeded taxi-time: 

1) From the input data, reconstruct a time- 
history of the number of aircraft on the 
airport surface. 

2) For each source s, consider the set of 
aircraft originating from that source. Filter 
these aircraft, selecting a subset which 
entered the system under conditions which 
imply little to no interaction with 
congestion at the bottleneck queue. 

3) Using standard statistical techniques, 
estimate a p.d.f. for unimpeded taxi-out 
time using this subset, under the 
assumption that each aircraft in the subset 
represents an independent and identically 
distributed sample from the p.d.f. 

This basic formulation is used by most software 
tools currently used to predict or estimate taxi- 
times. Different software tools use different 
methods in assigning sources to aircraft, and in 
selecting the subset which interacts least with the 
bottleneck queue. For example, the basic algorithm 
used in the Surface Movement Advisor (SMA) tool 
at ATL to predict departure taxi-times assumes a 
single source (all aircraft are treated identically); a 
subset consisting of the last twelve aircraft to push2; 
and a simple interaction filter which removes the 
highest and lowest taxi-times from each 12-aircraft 
subset [3]. Another algorithm is described in the 
documentation for the Consolidated Operations and 
Delay Analysis System (CODAS) [4]. CODAS 
estimates unimpeded taxi-times by assigning 
sources according to season of the year and airline 
carrier; computing a linear regression between taxi- 

time and queue-lengths at time of pushback using 
both arrival and departure queues; and selecting a 
“virtual” subset by extrapolating the linear 
regression to zero queue-lengths. 

Our software tools leave the method of 
assigning sources entirely to the input data: the 
classification variables specified in the input 
records are used in the calculations. The web-based 
interface (described below) uses airlines as sources, 
since airlines typically cluster their gates, and 
because no better indication for an aircraft’s source 
is available in ASQP. The Excelm-based interface 
(also described below) comes pre-packaged with a 
set of EWR operations data, and maps different 
airlines and flight-numbers to the 4 airport 
terminals at EWR. 

An accurate heuristic for determining the 
interaction between an aircraft and the congested 
queue near the airport’s primary bottleneck has 
been developed in [5,6,7]. For each aircraft, a 
traffic-interaction index3 is computed. This index 
counts the number of system-exits (takeoffs for 
departure traffic, or gate-arrivals for arrival traffic) 
which occur while that aircraft is on the airport 
surface. For a given aircraft F, a low index 
indicates that F could not have waited in a long 
queue, else a large number of other aircraft would 
have left the system while F was taxiing. Similarly, 
F could not have experienced long delays unrelated 
to traffic, else a large number of undelayed aircraft 
would have passed F on the tarmac and left the 
system while F was taxiing. This index is 
computed for each aircraft in the input dataset, and 
a subset of aircraft with “small” indices is used to 
estimate the taxi-time p.d.f.’s. The web-based 
interface uses a threshold of - the median index to 
determine which aircraft have  small^' indices. 

Calibration Of Bottleneck Service Rate 
Methods to estimate the service-rate of the 

runway have been the subject of intensive 
investigation [5,8,9,10]. The central problem of 
these analyses is to observe or compute the 
maximum throughput of the runway system. Many 
of these analyses are based on the same idea: 
estimate the probability that the runway queue is 

~ ~~~ 

* Note that this lumps together unimpeded taxi-time with 
queueing effects, a significant difference from the traffic-flow 
model assumed in this paper. 

This index of an aircraft’s interaction with other traffic is 
denoted NH or Q in the given references. 
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empty, and then focus on intervals when that 
probability is low. Note that this idea generalizes to 
traffic bottlenecks other than the runway. A 
number of airport improvement programs are 
underway to automate real-time surveillance of 
surface movements, typically focusing on 
multilateration systems. As improved operations 
data from these surveillance systems become 
available, it will become useful to consider 
additional surface bottlenecks such as crossing- 
points and merges along the taxiways. Hence the 
calibration algorithm has a flexible design which 
only assumes a simple FIFO structure for the 
bottleneck queue, rather than the specific structure 
observed at the runway queue. 

The calibration algorithm is based directly on 
the idea of estimating the probability that the 
bottleneck queue is empty. Let Pt be the probability 
that the bottleneck queue is empty at time t. 
Assume that an estimate has already been obtained 
for the unimpeded taxi-time p.d.f.’s. for aircraft 
originating from each source. Initially, before any 
aircraft are considered, the queue is presumed to be 
empty (Pt=l).  For each aircraft F, for all 
t~ [T, To], perform the following update: 

PI := Pt x Pr(taxi-time 2 t - Ti) 
This update relies on the assumption that 

unimpeded taxi-times are independent to justify the 
multiplication. The probability Pr is calculated as 
the complementary distribution function of 
unimpeded taxi-time, except for I= To when the 
probability is set to zero, since the queue cannot be 
empty immediately preceding an aircraft’s exit from 
the system. After iterating through the set of all 
aircraft, P, contains an estimate of the probability 
that the queue is empty at time t. This estimate then 
yields a set of data consisting of pairs (Pt, NP) 
where N p  is the number of aircraft exiting the 
system at time t. The statistic of interest is the 
distribution of N p  as P+O, which can be estimated 
via standard regression techniques. 

Simulation 
Once the calibration algorithms have been run 

on a representative sample of input data, the 
resulting calibrated model dynamics form a well- 
specified stochastic system which is amenable to 
Monte Carlo simulation. Two types of Monte Carlo 
simulation are useful. The calibrated model 

dynamics can be simulated “as-is” without 
modification. Actual flight records are used to 
provide realistic inputs to the system, and the 
Monte Carlo simulation approximates the expected 
system outputs. This type of simulation is useful to 
determine whether the assumed model dynamics in 
fact reproduce (in an aggregate statistical sense) the 
actual system dynamics. Another type of 
simulation involves modifying the model dynamics 
and then simulating the modified system. This type 
of simulation is useful to test the effect of 
incorporating more complex and detailed dynamics4 
or to test the imposition of control schemes 
designed to optimize some performance metric of 
surface traffic’. 

Validation 
The validation technique is quite simple: 
1) Compute a calibrated model using input 

data from odd-numbered weeks. 
2) Using the calibrated model dynamics, 

driven by input data from the even- 
numbered weeks, compute several Monte 
Carlo simulations. 

3) Compute a calibrated model using the 
simulated flight-data produced by the 
Monte Carlo simulations. 

4) Compare the two calibrations. 
Simulation of the unmodified dynamics can be 
vectorized for efficient implementation in Matlabm. 
For each source in S, a vector of unimpeded taxi- 
times is generated using standard Monte Carlo 
techniques from the calibrated p.d.f.’s. Similarly, a 
vector of bottleneck queueing service-times is 
generated. For each aircraft, the unimpeded taxi- 
time is added to the Ti epoch to obtain a simulated 
qE (queue-Entry) epoch. Aircraft from all sources 
are then sorted according to the qE epochs. For a 
set containing N aircraft, assume the qE epochs are 
ordered such that: 

qE( l ) IqE(2 )1  ... IqE(N) 

Then only a single pass through the input data 
is required to simulate the standard FIFO queueing 
dynamics [ 1 11: 

See [2] for a study on the effect of downstream restrictions. 
See [6,14,15] and the section below on “’windowing” 

congestion control for studies of the effect of using gate-holds 
to mitigate runway queueing. 
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To(0) -00 

To(n) = max {qE(n), To(n-1)} + service-iime(n) 

After simulating the To epochs, the aircraft are 
returned to their original order. A straightforward 
coding of this algorithm in MatlabTM requires 40 
lines of code and can simulate a month’s worth of 
traffic data from a major U.S. hub in <1 s on an 
average desktop computer. 
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fiom the database; runs the calibration functions; 
and creates both visual and text-based versions of 
the results (see Figures 1 through 3). In addition, a 
taxi-time predictor (described in the “Applications” 
section) is also provided. Planned upgrades to the 
web-based interface include automated model 
validation, improved taxi-time predictors, and an 
evaluation tool for testing a proposed congestion- 
control algorithm for departure traffic. 
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Matlab =Based Interface: 
Basic Tools 

using standard toolboxes. Real-world operations 
data is input as a single matrix, with columns 
containing (source, Ti, To) data, and a row for each 
aircraft. A well-documented set of functions 
operate on this singe input matrix to perform tasks 
including data preprocessing; estimation of model 
parameters; simulation of the basic model 
dynamics; validation; simulation-based 
optimization; and visualization. MatlabTM was 
chosen as the basic language for implementing the 
software tools because it is widely available and 
portable, and it hides irrelevant details of 
programming to focus on the actual algorithms. 
Thus the current implementation allows the 
software tools to be easily adopted and improved by 
users outside our research group, and encourages 
rapid prototyping and visualization of new ideas 
and results. 

The basic software tools are coded in MatlabTM 

Web-Based Interface: 
Calibration Tools 

A subset of the MatlabTM-based tools are 
accessible through a web-based interface, available 
at http://icat-server.mit.edu/-fcarr/online-model/. 
The web-based interface has access to a database of 
ASQP records covering more than 250 U.S. airports 
over the period Jan- 1995 through Dec-200 1. Users 
are prompted to select an airport and a month-long 
period of interest. This input starts a MatlabTM 
computational engine located on our server. The 
MatlabTM engine pipes in relevant flight-records 

Taxi-time CDF (observed, and fitted lognormal) for airline #O 

.Fitted parambtels lor alrlihe 0: 
, Mean=6.2721 

Std. devialioq=3.0238 , 

n ._ I - -  
5 10 15 20 

Time (minutes) 

Figure 1: Sample of Visual Output From Web- 
Based Interface (Calibrated Taxi-Time P.D.F) 

Calibration of queue service-rate (95% confidence intervals) 

. . /.\ . . I  . \. . . I . . .  - \.\\A-. \ ,  I. 
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Figure 2: Sample of Visual Output From Web- 
Based Interface (Bottleneck Rate As Pt + 0) 



Arrival statistics: 
Fitted parameters for airline 0: 
Mean=6.2727 
Std. deviation=3.0238 
LogNorma1 \mu=1.3374 
LogNorma1 \sigma=0.60283 
LogNorma1 shiftrl.7048 

Mean16.7091 
Fitted parameters for airline 3: 

~~ 

Figure 3: Sample of Textual Output From Web- 
Based Interface 

Between the time they select an airport and 
period of interest, and the time they receive their 
results over the web, online users see a delay of 
approximately one minute. Once a user has 
requested calibration data for a particular airport 
and time-period, the results are archived and 
immediately available for later downloads, thus 
removing the one-minute delay. 

In practice, the capability to rapidly and 
automatically baseline the traffic at almost any U.S. 
airport has proven useful several times in our 
research. The description of surface traffic as 
provided by ASQP is relatively coarse, but does 
adequately describe many of the hub and spoke 
airports which are of greatest concern to the major 
U.S. passenger carriers. 

Excel-Based Interface: 
Simulation-Based Optimization 

been packaged as part of an educational teaching 
module through the Sloan Foundation Systems 
Studies at MIT [12]. The educational goals of the 
module are to give students insight into issues 
which affect airline and air traffic control 
operations at highly congested airports. To support 
these goals, the MatlabTM-based simulation 
functions have been re-implemented in Python, a 
portable, widely-used and cost-free scripting 
language [ 131. Users are provided with a detailed 
set of ExcelTM spreadsheets describing one day of 
weather and traffic at EWR. Relevant papers and 
study problems then encourage users to test the 
effects of different airline schedules and FAA 
traffic restrictions on departure congestion and 
delays. Using ExcelTM, the base EWR data are 
modified to create different schedules and traffic 

Another subset of the MatlabTM-based tools has 

restrictions. These modified operations data are fed 
directly to the simulation scripts, which output 
statistics for each aircraft's taxi-time and queueing 
delay, as well as statistics on surface congestion for 
the airport as a whole. These results can then be 
analyzed and visualized directly in ExcelTM. A 
single CD contains the Python installer; the base 
EWR data; and the simulation scripts. 

Currently, parts of this teaching module are 
used in several classes at MIT, which cover topics 
including air traffic control, airline operations, and 
airport modeling and planning. The teaching 
module is currently under evaluation for similar 
classroom use at University of Cambridge. 

Applications 

Taxi- Time Predictors 

interface is a taxi-time predictor originally 
described in [ 141. The output of the taxi-time 
predictor is a simple lookup table which maps the 
airline and departure congestion (measured as the 
number of departing aircraft on the airport surface 
at Ti) of a given flight to the expected taxi-out time, 
including queueing delays. This taxi-time estimator 
can be easily obtained as a byproduct of the data 
preprocessing which already occurs when the web- 
based interface is accessed. 

One of the outputs provided by the web-based 

Departure taxi4ime predidor #2 1 

(quadraticfitto obwved l7Q da?) 
t 

Table 1: Sample Of Output From Web-Based 
Interface (Taxi-Time Predictor) 
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Win dowing Congestion Control 
Windowing congestion control was first 

proposed in the context of airport surface departure 
traffic in [ 151 under the name of “N-control”. The 
basic idea is intuitively appealing. If too many 
departing aircraft are already queued up on the 
airport surface waiting to take off, then any 
additional departures released from the gates will 
necessarily be delayed. Delays taken at the gate are 
less expensive in several respects than delays taken 
while taxiing. Hence, if departure surface 
congestion is too high, it may be beneficial to 
temporarily delay additional pushbacks at the gate. 

Gate-delay is certainly less expensive than 
taxi-out-delay in terms of environmental emissions; 
direct operating costs for crew and fuel; and missed 
opportunities to catch late passengers and baggage. 
However, there are also potential disadvantages due 
to increased utilization of scarce gates; missed 
opportunities to catch an early position in the 
runway queue; and degraded on-time departure 
statistics. The optimal balance among these costs is 
not immediately apparent, which has led us to 
develop s o h a r e  tools which enable a tradeoff 
analysis between the competing factors. 

The quantities computed in the tradeoff 
analysis include total gate delay, total taxi-out 
delay, and aggregate gate utilization. Two control 
parameters are used: the maximum number of 
departing aircraft allowed on the airport surface 
(denoted C), and the maximum gate-delay assigned 
to any departing aircraft (denoted D).  It is assumed 
that the max-delay constraint is “stronger” than the 
max-congestion constraint, so that departing aircraft 
are never held longer than D minutes under any 
circumstances. Other inputs to the tradeoff analysis 
include the predicted pushback schedule over the 
period of interest, and a set of calibrated model 
parameters as produced by the calibration 
algorithms. 

Carlo simulation. In general, the simulation 
algorithm is similar to the algorithm previously 
described for simulation of the unmodified 
dynamics, including a vectorized computation of 
taxi-out and runway-service times for each flight, 
followed by a single pass through the flight records. 
However, the simulation dynamics must be 
modified to account for the control constraints. 

The tradeoff analysis is computed via Monte 

A priority queue TW is used to track aircraft 
currently taxiing towards the runway queue. The 
following set of updates are iterated until all 
pushbacks recorded in the input data have occurred 
and TW is empty: 

While some aircraft have not pushed and 
fewer than H aircraft are in TW, allow an 
aircraft to push at its desired pushback time 
E. This aircraft is placed in TW according 
to the time it should reach the runway 
queue (denoted 4E in accord with the 
notation used previously). 

While some aircraft have not pushed and 
the next aircraft to push would have to wait 
too long before a takeoff, allow the next 
aircraft to push at time T+D, thus reaching 
the runway queue at qE+D. 

If some aircraft have not pushed and 
exactly H aircraft are in TW, allow the next 
aircraft to push at time max { E,  next To} 

If TW is not empty, remove the earliest 
aircraft from TW. Among the set of aircraft 
currently taxiing out, this aircraft will be 
first to reach the runway queue and take 
off. Its takeoff time can be computed using 
the standard FLFO queueing dynamics 
discussed previously. 

While complex at first glance, these modified 
simulation dynamics allow both the max-congestion 
and max-delay constraints to be imposed on the 
basic simulation dynamics without losing the 
simple single-pass computational strategy. A 
profile of the Matlab’” execution of this algorithm 
indicates that almost 90% of the computational time 
is spent modifying the priority queue data structure; 
recoding this data structure into compiled C code 
which is called from Matlab’” substantially reduces 
the execution time to 4 s .  

The modified simulation dynamics have 
several desirable characteristics. Aircraft still push 
back in their original order to preserve fairness 
among competing airlines. No aircraft is held 
beyond a given threshold of delay6, and thus it is 

Note that only a trivial modification is required to make the 
max-delay threshold If specific to each aircraft, thus allowing 
much greater planning flexibility. 
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easy to ensure that on-time departure performance 
is not unduly impacted. Different control levels can 
be rapidly evaluated to determine the expected 
performance in terms of congestion and delay, thus 
allowing airline operation centers and air traffic 
controllers to make realistic tactical decisions. 

The main drawback to the modified simulation 
dynamics is that gate utilization is not properly 
accounted for. It is easy to track the aggregate gate 
utilization by tracking the cumulative count of 
pushbacks and gate-arrival events as they occur, 
and preliminary studies at EWR and ATL indicate 
that windowing congestion control does not 
typically require additional gates beyond those 
which each airline already uses [ 161. However, 
gates are obviously not interchangeable. To 
determine whether windowing congestion control 
will delay a pushback until a later gate-arrival is 
impacted, detailed operations data including 
planned and feasible alternate gate assignments for 
each flight is required. 
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